DEPT OF NUCLEAR TECHNOLOGY

CHULALONGKORN UNIVERSITY

Presentation - 9

" HUMAN FACTORS in DESIGN OPERATIONS and MAINTENANCE"

George Wieckowski Operations Quality Corp.

Nov. 1996

OBJECTIVES of PRESENTATION

This presentation will discuss

the following topics :

• General "Human Factors" guidelines

• Error- reduction considerations in :

- design
- operations and maintenance
- Human performance evaluation system (HPES)

HUMAN FACTORS

GENERAL GUIDELINES

- Accept human error as inevitable part of human variability
- Analyze errors and conditions under which they occur
- Assign blame with discretion
- Address the cause of errors not the symptoms
- Consider capabilities and limitations of humans
- Identify and design out error prone arrangements

HUMAN FACTORS PRINCIPLES

to be considered in

DESIGN

IMPORTANT ACTIVITIES of HUMAN

FACTORS SPECIALIST

- Organizational analysis
- Task analysis
- ◆ Interface design
- Maintainability analysis
- Communication analysis
- Work place layout study
- Physical demand analysis
- Workload analysis
- Human reliability assessment

AUTOMATION - HOW MUCH ?

Considerations:

◆ <u>Allocation of function</u>

- how much to automate ?
- ◆ Interface design
 - provision of continuous feedback
- ◆ <u>Training</u>
 - recognizing nature of the problem
 - understanding of correct action
 - anticipating results
- Procedures
 - provision of clear guidance
- Continued competence practice
 - what, where, how often ?
- <u>Complexity</u> and potential maintenance problems

HUMAN FACTORS in OPERATIONS

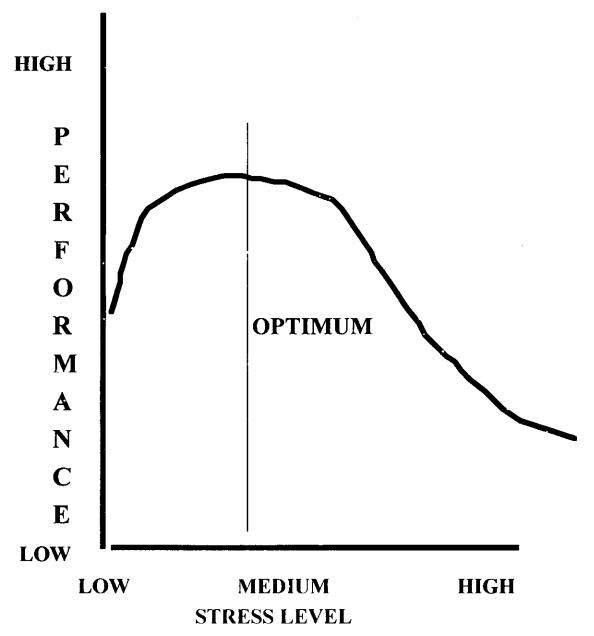
and MAINTENANCE

Pre-requisites :

- Management commitment
- ◆ Specialist resources
- Reporting and analysis of human error events
- ◆ Data base and learning from experience

To be addressed :

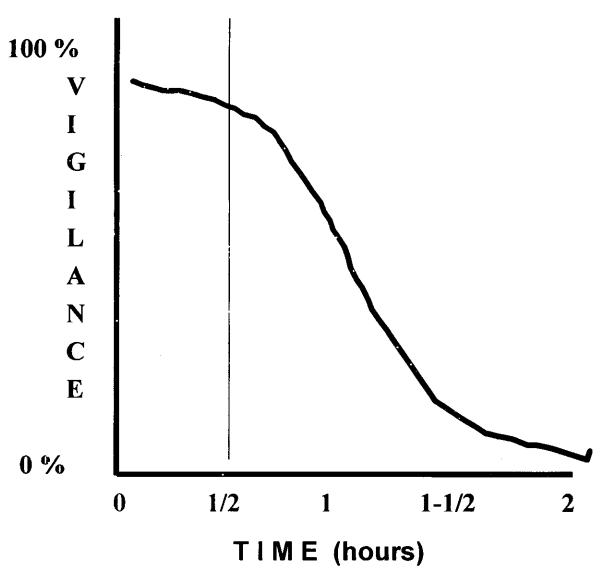
- ◆ Procedures
- Qualification and training
- ♦ Supervision
- Verification
- Internal interfaces
- Working conditions
 - Personal factors
- Performance assessment

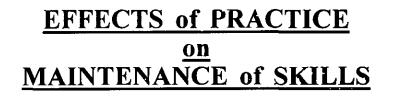

TRENDS in OPERATIONS

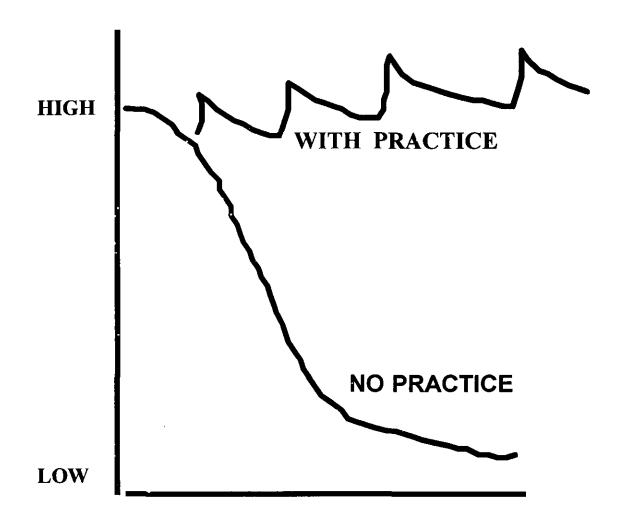
- Decrease in direct operator control
- Increase in operator supervision
- Increased complexity of instrumentation and equipment
- Expectations of higher production
- When troubles arise :
 - more equipment to be repaired
 - diagnosis more difficult

RESULT:

- Source of human error shifting from operators to maintainers
- Better training required for maintainers

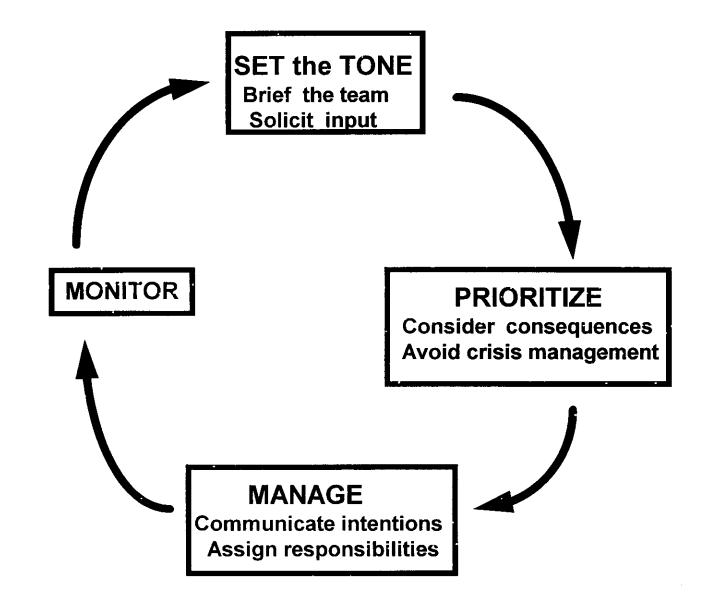

RELATIONSHIP between PERFORMANCE and <u>STRESS</u>




VIGILIANCE EFFECT for PASSIVE TASKS

WITH LOW SIGNAL RATE

10


TIME

REQUIREMENTS for PROCEDURES

- ♦ Stating the essentials
 - supporting details available elsewhere
- Technically correct and complete
- Clear, free of ambiguity and user friendly
- Contain warnings of hazards
- Supported by operating/maintenance aids
- ◆ There are no awkward actions expected
- Sequences of operations fit with equipment layout
- Consistency with operating philosophy maintained

CREW COORDINATION

MODEL

VERIFICATION

Independent <u>inspection and verification</u> means that work is inspected by someone with appropriate qualifications who did not do or supervise it

<u>Verification</u> must be specified and documented

Verification:

- contributes to reduction of errors
- increases labour and time requirements

"S-T-A-R" is a form of self - verification

<u>"S - T - A - R"</u>

◆ <u>S - stop.</u>

- pause before acting,
- focus attention,
- review details

◆ <u>T - hink</u>

- what is to be done
- identify equipment and controls
- consider current indications

- maintain contact with equipment
- physically touch equipment/control
- confirm correct equipment is being acted upon
- <u>**R** eview</u>
 - verify expected response
 - if unexpected response occurs, take appropriate conservative action

INTERFACES

Symptoms of problems :

- control information misinterpreted
- alarms delayed, flooding or spurious
- information lost during shift change
- technical instructions miunderstood
- maintenance priorities do not match operations needs

Atributes of interfaces :

- clear, unobstructed communications throughout
- layout of instrumentation promotes clarity of presentation
- alarms up-to-date and alarm messages clear
- shift changes professionally executed
- operations, maintenance and technical work as a team
 16

WORKING CONDITIONS

Important parameters :

- facility access and layout
- maintainability and access to equipment
- signs, labels and coding
- illumination
- thermal environment -temperature and humidity
- noise and vibration
- control room design
- design of information displays
- human computer interface
- Freedom from interference and disruption

PERSONAL FACTORS

Physical demands of the job :

- effects of fatigue
- work posture
- physical exertion

◆ Level of stress on the job :

- job or supervisory demands
- extent of concentration required
- conflicts on the job

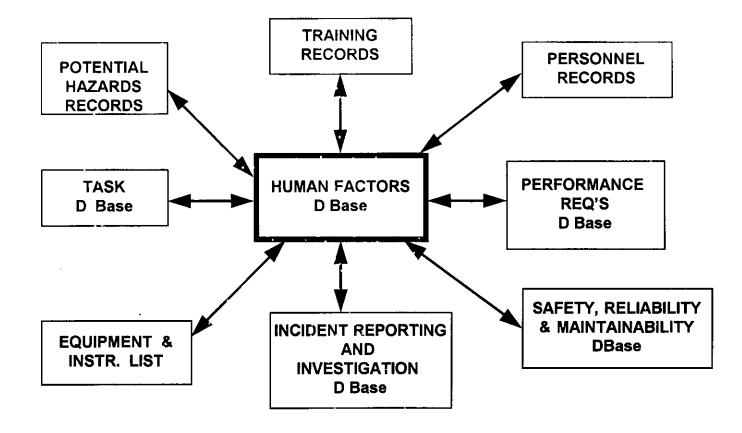
Industrial hygiene

- frequency of breaks
- cafeteria and food
- showers and toilets

HUMAN PERFORMANCE EVALUATION

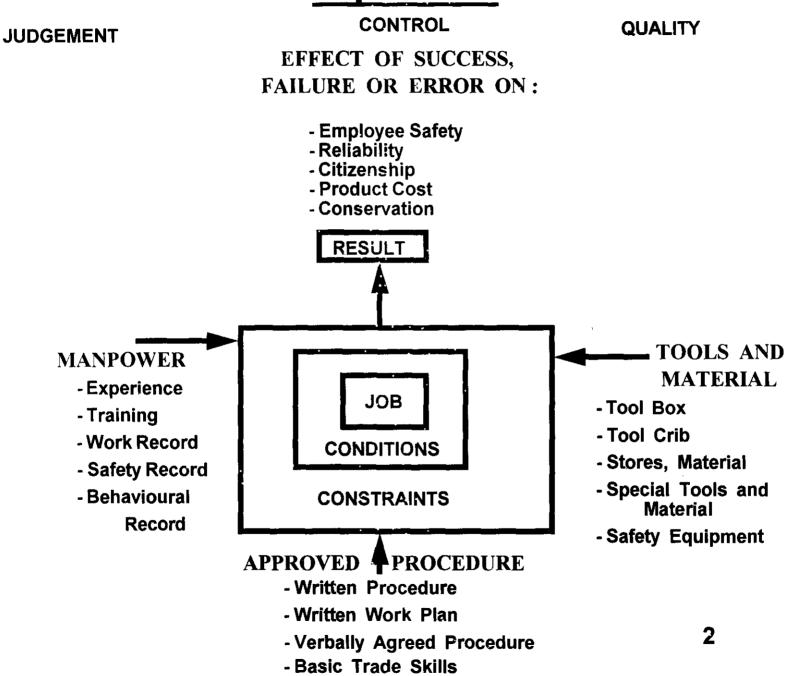
SYSTEM (HPES)

Objectives:


- to determine the causes of errors
- to specify and implement corrective action
- to monitor results of corrections

Participants in the program :

- <u>line management :</u>
 - + uses program to resolve causes of errors
- <u>"reporters"</u> all staff who report problems
- program coordinator a specially trained
 + analyzes reported events
 + determines their causes
 - recommends corrective action
- <u>evaluators</u> assist the coordinator
 trained in analysis and evaluation
 have detailed knowledge of equipment


INTERACTIONS BETWEEN HUMAN FACTORS

and OTHER D-BASES

1

Supervision

